524Uploads
214k+Views
114k+Downloads
Design, engineering and technology
Book themed door display
Decorating a classroom door with a book theme
World Book Day is an annual event where people come together to celebrate and promote books and reading.
This resource was inspired by World Book Day and supports the development of literacy by creating a decorated door that will inspire learners to find out more about books. When passing through the door, learners could imagine that they are exiting their normal reality into the reality created in that literature.
The decorated door could be produced by a teacher or teaching assistant; however, here the learners themselves will design and create the displays.
Activity info, teachers’ notes and curriculum links
In this activity learners will identify a favourite book and use this as inspiration to design a decorated door. This links reading in English, the design process in Design & Technology and the use of art skills to produce the design.
This activity could be used as a main lesson activity, to support learners’ engagement in literacy. It could also be used as a learner-led means of generating class/door displays.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
These will depend upon the designs, but could include:
Paper and/or card, writing and colouring implements, lining paper etc.
Access to an image bank, either printed out or electronic with access to a colour printer.
Scissors and glue sticks.
Sticky tack.
A selection of books for inspiration.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Make an Egyptian necklace
**Discover how to make a necklace inspired by ancient Egyptian jewellery **
In this activity for kids, students will learn how to make an item of jewellery inspired by ancient Egyptian jewellery. This activity will teach students historical facts about ancient Egypt and encourage them to design and create. Resources are provided for teachers to help students make a necklace inspired by the jewellery of the ancient Egyptians.
Activity info, teachers’ notes and curriculum links
In this activity learners will make an example of a necklace inspired by ancient Egyptian jewellery from easily sourced materials. There are related activities that involve making an alternative form of necklace and bracelets.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Downloadable content
• Make an Egyptian necklace activity
• Make an Egyptian necklace presentation
Tools/resources required
Metallic card
Kitchen roll/toilet roll tube x3
Gold/silver/bronze paint
PVA Glue/glue dots
Scissors
Rope/cord pre-cut into three lengths
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Create Chinese calligraphy
Learning how to write using traditional Chinese handwriting.
In this activity learners will use the theme of the Chinese and Lunar New Year to learn about and make use of Chinese calligraphy. They will learn about different types of ‘script’, what is meant by a Xuan, and how to write numbers using Chinese Regular script.
There are five major script types used today in China: seal script, clerical script, cursive script, running script and standard script. Regular script means the proper script type of Chinese writing and is used by all Chinese for government documents and printed books.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Tools/resources required
Pencils
Paintbrush
Paint
Pot of water to clean brush
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
What am I? Inputs and outputs
Guess the device from a series of clues
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy.
Activity info, teachers’ notes and curriculum links
This is an engaging starter activity where learners will extend their understanding of input and output devices used in the system and consolidate their learning. They will be able to develop their knowledge of components and both test themselves and their peers.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Materials: Fit for purpose
Explore a range of engineered and smart materials
The Materials fit for purpose activity comprises a series of short, focused tasks with a strong emphasis on developing creative thinking. Students explore a range of smart materials to identify why they have been specifically designed and engineered to provide the requisite properties and characteristics for a given purpose.
This activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. This has a predominantly design and technology, and engineering focus, although the activities could be used in science, either as starters or extension activities.
Tools/resources required
Projector/Whiteboard
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
Make a steady hand game
Prepare a suitable housing for the circuity, assemble the circuit and produce a wand and maze layout for the game
In this hands-on STEM project students will learn how to make and test a steady hand game circuit. They will prepare a suitable housing for the circuit, assemble the circuit themselves and produce a wand and maze layout for the game. This is a great way for primary school students to learn all about how simple circuits work and develop their understanding of what is meant by the terms ‘make’ and ‘break’ when referring to the flow of current around a circuit.
This could be used as a one-off activity or as part of a wider unit of work focusing on electricity and electrical circuits. It could also be used in conjunction with the IET Education Primary Poster – Circuits and Symbols.
This activity could be completed as individuals or in small groups, dependent on the tools, equipment and components available.
Tools/resources required
Plastic cups
350 mm lengths of 2 mm diameter copper wire
150 mm lengths of 2 mm diameter copper wire
150 mm lengths of 1 mm diameter copper wire
Multi strand insulated wire or crocodile clips
Solder
9 V batteries and clips
9 V buzzers with wires
Masking and/or insulating tape
Double sided tape and/or sticky pads
Pillar drill or electric hand drill
2 mm drill bits
Soldering equipment (soldering irons, stands, sponges)
Wire cutters and strippers
Safety glasses
The engineering context
Engineers need to be able to understand how basic electrical circuits work. This includes current flow, voltage and how to ‘make’ and ‘break’ circuits. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future.
Suggested learning outcomes
By the end of this activity students will have an understanding of the terms ‘make and break’ when they refer to simple circuits. They will also be able to assemble, fit and test a simple circuit for a steady hand game and they will be able to safely and accurately drill holes in plastic.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, printable and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Using fruit batteries to produce electricity
Using lemons and limes to power an LED
In this fun STEM activity learners will construct a series circuit consisting of four fruit batteries and an LED. They will learn about the main parts of a battery and how fruit can be used to provide enough voltage to light an LED. They will also investigate how the brightness of the LED changes depending on the number of fruit batteries used in the circuit.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on the use of fruit to power a light emitting diode (LED).
This could be used as a one-off activity or as part of a wider unit of work focusing on electricity and electrical circuits.
This activity could be completed as individuals or in small groups, dependent on the components and tools available.
Lemons or limes can be used, or a mixture of both. Each lemon or lime should provide between approximately 0.7 and 0.9 V. This can be tested by using a multimeter if required.
The total voltage of the series circuit can be calculated by adding up the voltage of each individual battery. This arrangement would produce approximately 2.8 – 3.6 V depending on the voltage of each individual piece of fruit.
How long will this activity take? Approximately 40-65 minutes to complete.
Tools/resources required
Red and black crocodile clips
Lemons and/or limes
Zinc coated nails
50 mm lengths of 1 mm or 2 mm diameter copper wire
Low voltage hi-bright LEDs
Wire cutters
The engineering context
Engineers need to be able to understand how basic electrical circuits work. This includes the main parts of a battery and how they work to power electrical output devices. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future.
Suggested learning outcomes
By the end of this activity students will understand how fruit can be used to make batteries that can power electrical output devices, they will know the main parts that make up a battery and they will be able to construct a series fruit battery circuit that lights an LED.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Electrical safety outdoors poster
Primary classroom poster showing useful rules to observe when using electricity both in and outside the home.
Download the single poster or order a full set of posters from the IET Education website.
Radio waves poster
Primary classroom poster looking at how radio waves help us connect to our friends and families.
Download the single poster here or order the full set of posters for free from the IET Education website.
Make a model hydraulic boat lift
Making a model of a hydraulic boat lift using syringes
This is one of a series of resources produced in association with Fairfield Control Systems that are designed to allow learners to use the theme of waterways to develop their knowledge and skills in Design & Technology, Engineering and Science. This resource is based on the Anderton boat lift and the use of hydraulic systems.
The teacher will first discuss what is meant by a hydraulic system and how they are used in engineering applications such as cranes and brakes. The teacher will then demonstrate the steps shown in the presentation to make the model boat lift. Learners will then carry out the activity and produce their own models before showing their boat lift models to peers and asking what could be improved.
This activity can be simplified (particularly for less able students) by pre-cutting the templates and corrugated cardboard to size. An exemplar model could be used to illustrate what the final boat life should look like.
Print out the handout for learners to cut out and use the templates.
As an extension students could investigate how much the boat lift can lift.
This activity is designed to take between 45-70 minutes to complete.
Tools/resources required
Corrugated cardboard sheets
10 ml syringes
Cable ties (Size: 20 cm length)
3 mm clear plastic tube
Water and measuring jugs
Food dye
Pencils
Sticky tack
Adhesive
Masking tape, sticky tape or hot glue gun (optional)
Craft knife and cutting mat (teacher only)
The engineering context
The waterways (including their protection, maintenance and control) is an excellent context to explore opportunities that working in the engineering industry presents. For example, constructing locks, building narrowboats or making and maintaining boat lifts.
Engineers often make models of working systems to test how they function. For example, a crane designer will make models of different crane designs to see which structures can provide the best support and which designs can lift the heaviest object.
Suggested learning outcomes
By the end of this free resource students will be able to know the difference between pneumatic and hydraulic systems; know that 3D shapes can be constructed using templates; and be able to make a model of a simple boat lift model using syringes.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Technology in sports
In this engineering activity, students will work in groups to share their knowledge of the use of technology in sport. They will each give a 60 second presentation about the topic to their group.
This task is aimed at secondary school students and could be used as a starter activity with ‘Create a portable beep tester’ as the main activity. It is an ideal exercise for learners to both demonstrate and develop their knowledge of the topic of technology in sport, and share with their peers.
Activity introduction
This activity encourages learners to recall information, helps learners develop their oral presentation skills and encourages learners to work together to develop their knowledge.
The teacher will first state to students that they will be demonstrating their existing knowledge of the use of technology in sport. They will also be developing their knowledge further by working with other learners in this group and listening to their presentations.
Learners will be expected to work in teams of four. Their topic to talk about will be ‘the use of technology in sport’. Each learner in the group will, in turn, speak about this topic to their team for 60 seconds. They must try not to hesitate, deviate or repeat any information!
Each group of four will write a summary of the main points learnt and read it out the class. This can be both in terms of knowledge of the topic and oral presentation techniques used.
The engineering context
Sports Technology is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at key stage 3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the product integration skills of learners.
Technology in sport
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions and set targets for future improvement.
In this unit of learning, students will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels.
Suggested learning outcomes
By the end of this activity students will be able to describe how technology can be used in sport, present an oral presentation on the topic of technology in sport and they will be able to work as part of a team to develop their knowledge of technology in sport.
Download the activity sheets for free!
And please do share your classroom learning highlights with us @IETeducation.
Create a foldable football goal
Designing and making a foldable goal that could be transported to and used in Lunar football matches
In this activity learners will make use of the theme of football on the moon to design and make a model of a foldable goal for use in a Lunar league football game. They will consider the issues with playing football on the moon and transporting equipment to it. They will then design and make a model of a goal that could be folded into a tube for transport, then opened up and used.
This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on learners designing and making a model of a foldable goal that could be transported to, and then used for a game of football on the moon.
The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before explaining the design brief and task ahead to design, make and test a model goal.
This activity can be simplified (particularly for less able students) by providing templates for the shape of the goals and/or pre-cutting the straws and string into required sizes.
As an extension students could organise a Lunar Football League with other groups in the school; design and make a model of a space rocket to get your goals to the moon and/or design foldable equipment for other sports, such as Rugby goals or a cricket sightscreen.
This activity is designed to take between 60-100 minutes.
Tools/resources required
Paper straws
Scissors
String (or wool)
Ruler
Pencils
A bamboo skewer or similar thin rod
Sticky tape
A cardboard tube (E.g. the inside of a cling-film/tin foil roll)
A small ball, such as a table tennis ball
The engineering context
Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit?
Suggested learning outcomes
By the end of this free resource students will be able to understand the challenges of living and playing football on the moon; design and make a model of a foldable goal; and understand the function of different shapes of structure.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Boat design challenge – KS3 engineering
A fun engineering challenge for KS3 that will give students the opportunity to test boat hull designs in a test tank.
Through this process, students will learn about the importance of applying relevant scientific and mathematical understanding when refining and developing an idea.
This activity allows students to explore and develop their critical thinking and decision-making skills through a practical approach. The experiment ensures a ‘fair’ set of results is produced. The success of their overall boat hull design is directly dependent upon how well they apply their knowledge and understanding across the disciplines. In addition, key learning points needs to be reinforced through mathematics.
The students could carry out initial research into different hull shapes used for various types of boat, and they should produce an image board of hulls with annotations to explain why the shape of the hull is appropriate for the particular type of boat.
Types of boat hulls that could be researched include yachts, cruise ships, speed boats, fishing boats, container ships, and catamarans.
This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project and ideal for use in a STEM Club. However, it can also be tackled independently from each subject.
Tools/resources required
Test Tank (the construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity) or by a technician)
Vacuum Former
High Impact Polystyrene/MDF or softwood blocks
Optionally, modelling clay
General Workshop Facilities
Stopwatch
Masses with a suitable holder
The engineering context
The focus of this activity is on the principle of hydrodynamics (a similar set of principles to aerodynamics but involving water).
Suggested learning outcomes
By the end of this activity students will be able to understand the importance of testing models and prototyping within the development of an idea, the need for streamlining in boat design and the principles of hydrodynamic design.
Students will also be able to refine ideas in order to improve outcomes, they will be able to relate the shape of the hull to speed and the forces it needs to withstand maximum efficiency and they will be able to apply scientific and mathematical understanding to an engineering context.
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Water supply
Organise water filtration components to create a safe water supply system
Activity info, teachers’ notes and curriculum links
This activity challenges students to work in small teams to design a water supply system for a small town of 5,000 inhabitants. They have to work within a budget, including giving themselves a profit margin. The activity offers strong opportunities for cross-curricular work with Enterprise.
The ‘Catalogue of Components’ handout includes a list of possible parts from which students can include in their design of their filtration system.
Water is crucial to human life, but it can also be a killer.
Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Energy use of everyday appliances
Understand the relationship between energy transferred, power and time
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Reducing energy usage in the home saves money, increases energy security and reduces the need to burn unsustainable fossil fuels. The first step in doing this is monitoring how much energy is used each day.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a home energy usage monitoring system that will inform people how long they leave their lights and/or heating on during the day.
Activity info, teachers’ notes and curriculum links
In this activity, learners will calculate the amount of electrical energy used by one or more of their appliances in the home.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design a home security system
Use the BBC micro:bit programmable system to create a working prototype
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Home security is increasingly important as homeowners look to ensure that their properties and possessions are protected from potential burglary. Alarm systems are being developed with increasingly complex embedded electronics and programmable components.
In this unit of learning, learners will research, program and develop a working door access and alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will program a working door access and alarm system using the BBC micro:bit.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Build a robot arm with cardboard
Design and produce a 2D card model of the physical elements of a robot arm as an example.
This curriculum-linked activity teaches the foundation of a wide variety of real-world industrial applications, ranging from loading machines to assembling cars, welding parts together and spray-painting products. Robot arms are also used in applications such as bomb disposal and repairing spacecraft as they orbit the earth.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
Tools/resources required
For each participating team:
1 A4 cardboard or MDF baseboard
2 A4 pieces of thick card
1 pair of scissors/craft knife
5 brass fasteners/brads/split pins
5 thumb tacks
3 paper clips
2 m length of string or fishing line
2 rubber bands
2 m length of sticky tape or masking tape
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Use the Speed Equation to Calculate Journey Times
Calculate journey times from one country to another
A costly and sometimes very long aeroplane journey is currently the only option if you intend to travel a long distance. However, what about in the future? One method that has been proposed is the vacuum tube train. The vacuum tube train may be able to reach speeds of 4,000 mph, but is it a realistic option?
Activity: Use the Speed Equation to Calculate Journey Times
In this fun maths activity for KS3, students will use the speed equation to calculate how long it takes to travel to destinations around the globe from the UK via today’s global transport options. They will then be introduced to a new concept in global travel: the vacuum tube train.
Students will work in pairs or small groups to complete the tasks on the handouts below. Handout Journey Times A is for higher-ability students, and Journey Times B is for the less able. Students completing the handout Journey Times A may have to be informed/reminded of the speed = distance/time equation and how to use it to calculate the journey times.
This activity can be used to introduce ideas about the environmental, economic, ethical and social impacts of each type of global transport. For example, comparing fuel efficiencies, the impact of infrastructure on the environment and how polluting they are.
Suggested learning outcomes
By the end of this activity, students will be able to calculate time using the speed equation, and they will be able to identify issues surrounding global transport.
The engineering context
Engineering has constantly propelled human progress, and the vacuum tube train is a testament to this innovation. This cutting-edge transportation marvel utilises sealed tubes to create a low-pressure environment, drastically reducing air resistance. Maglev technology suspends the train, eradicating friction for unparalleled speed.
The engineering behind the vacuum tube train merges aerodynamics, materials science, and electromagnetic systems, enabling mind-boggling velocities. As we strive for more sustainable and efficient transit solutions, this exemplifies the potential of engineering to reshape our world, revolutionising travel and underscoring the limitless possibilities when science and ingenuity converge.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Maths behind a heating system
This is a practical exercise in which students will utilise their mathematical knowledge to solve problems and apply formulas. Specifically, they will compute the length of pipes necessary for an underfloor heating system. They will also write a brief explanation of how a sustainable underfloor heating system operates.
This can be effectively taught within mathematics or within design and technology, as part of resistant materials or product design.
How long will this activity take?
This activity will take approximately 60-90 minutes to complete
Tools/resources required
Green School film
Projector/Whiteboard
Measuring equipment e.g. tape measures or trundle wheels
Squared paper
The engineering context
Sustainability is a key consideration in modern engineering practices. As the world faces pressing environmental challenges such as climate change and resource depletion, engineers must design solutions that not only meet the needs of society, but also minimise their impact on the planet.
Sustainable engineering involves developing systems, products and processes that are socially, economically, and environmentally responsible. This can include reducing carbon emissions, optimising energy use, minimising waste, conserving natural resources, and designing products that can be recycled or repurposed at the end of their lifecycle.
Suggested learning outcomes
By the end of this activity students will be able to describe the operation of a sustainable underfloor heating system and they will be able to create and apply mathematical formulae in a practical context.
Download the free Maths Behind a Heating System activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Robot swarms
Write a set of rules for governing the behaviour of a robot swarm used in search and rescue operations
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
This activity gets students to work in small teams to create a set of simple rules which can be used to control a robot swarm designed to help in search-and-rescue-type scenarios such as earthquakes. The ‘Robot Swarms’ student brief sets the scene.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.